On the binomial edge ideals of block graphs
نویسندگان
چکیده
We find a class of block graphs whose binomial edge ideals have minimal regularity. As a consequence, we characterize the trees whose binomial edge ideals have minimal regularity. Also, we show that the binomial edge ideal of a block graph has the same depth as its initial ideal.
منابع مشابه
Binomial Edge Ideals of Graphs
We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of...
متن کاملBinomial edge ideals and rational normal scrolls
Let $X=left( begin{array}{llll} x_1 & ldots & x_{n-1}& x_n\ x_2& ldots & x_n & x_{n+1} end{array}right)$ be the Hankel matrix of size $2times n$ and let $G$ be a closed graph on the vertex set $[n].$ We study the binomial ideal $I_Gsubset K[x_1,ldots,x_{n+1}]$ which is generated by all the $2$-minors of $X$ which correspond to the edges of $G.$ We show that $I_G$ is Cohen-Macaula...
متن کاملOn the Betti Numbers of some Classes of Binomial Edge Ideals
We study the Betti numbers of binomial edge ideal associated to some classes of graphs with large Castelnuovo-Mumford regularity. As an application we give several lower bounds of the Castelnuovo-Mumford regularity of arbitrary graphs depending on induced subgraphs.
متن کاملIdeals and graphs, Gröbner bases and decision procedures in graphs
The well known correspondence between even cycles of an undirected graph and polynomials in a binomial ideal associated to a graph is extended to odd cycles and polynomials in another binomial ideal. Other binomial ideals associated to an undirected graph are also introduced. The results about them with topics on monomial ideals are used in order to show decision procedures for bipartite graphs...
متن کامل